پیش بینی پسماند تولیدی شهر تهران با استفاده از سامانه استنتاج تطبیقی فازی-عصبی و شبکه‌های عصبی مصنوعی

Authors

  • رضا علیمردانی استاد، دانشکده مهندسی و فناوری کشاورزی پردیس کشاورزی و منابع طبیعی دانشگاه تهران
  • محمد شریفی استادیار، دانشکده مهندسی و فناوری کشاورزی پردیس کشاورزی و منابع طبیعی دانشگاه تهران
Abstract:

پیش بینی کمیت تولید، نقش به سزایی در بهینه سازی و برنامه ریزی سامانه­ مدیریت پسماند­های جامد شهری دارد، اما به علت دینامیک بودن سامانه های مدیریت پسماند، پیچیدگی روابط بین متغیر ورودی و خروجی، در دسترس نبودن و یا ناکافی بودن اطلاعات و همچنین تاثیر عوامل متغیر و غیرقابل کنترل همواره کار مشکلی بوده است. امروزه استفاده از سامانه های هوشمند به عنوان راهکاری نوین در تحلیل مسائل زیست محیطی، گسترش یافته است. در این پژوهش توانایی دو مدل هوشمند شبکه عصبی با تابع آموزش لونبرگ مارکوارت و همچنین سامانه استنتاج تطبیقی فازی-عصبی برای تخمین میزان تولید پسماندهای ماهانه شهر تهران مقایسه گردید. برای این منظور از داده های مربوط به جمعیت، الگوهای فصلی، کل بارندگی ماهانه، میانگین دمای ماهانه، ارتفاع از سطح دریا، میانگین رطوبت ماهانه و کل پسماند تولیدی (TSW) این شهر در فاصله زمانی 1389 تا 1394 که به صورت ماهانه مرتب شده بودند، استفاده شد. بعد از آموزش و آزمون مدل­های شبکه عصبی و سامانه استنتاج تطبیقی فازی­-عصبی نتایج این مدل­ها مورد مقایسه قرار گرفت. نتایج به دست آمده از این پژوهش نشان داد که مدل فازی-عصبی با ضریب تعیین 963/0، جذر میانگین مربعات خطا 096/0و درصد میانگین مطلق خطا 05/1 نسبت به مدل شبکه عصبی با ضریب تعیین 852/0، جذر میانگین مربعات خطا 132/0و درصد میانگین مطلق خطا 19/1 دارای عملکرد بهتری می­باشد. همچنین نتایج بررسی دو مدل نشان داد که در هر دو مدل با داده­های ورودی الگوهای فصلی، کل بارندگی ماهانه، میانگین دمای ماهانه، میانگین رطوبت ماهانه و کل پسماند تولیدی (TSW) می­توان به پیش­بینی دقیق­تری دست یافت.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

پیش بینی و اطمینان از کیفیت روغن زیتون بکر با استفاده از سامانه استنتاج فازی– عصبی تطبیقی

تخمین پارامترهای کیفی روغن زیتون دارای اهمیت ویژه‌ای در روش‌های کنترل کیفیت مدرن است یکی از مهم‌ترین مشکلات در هنگام پیش بینی کیفیت روغن در طی نگهداری، پیچیدگی ویژگی‌های فیزیکو شیمیایی ماده اولیه و اختلاف داده ها به علل مختلف است. مدل‌سازی پایداری اکسایشی روغن زیتون با استفاده از سامانه استنتاج فازی– عصبی تطبیقی می‌تواند به بهبود فرآیند کنترل کیفیت این محصول کمک کند. ثبات اکسایشی یکی از پارامتر...

full text

پیش بینی و اطمینان از کیفیت روغن زیتون بکر با استفاده از سامانه استنتاج فازی– عصبی تطبیقی

تخمین پارامترهای کیفی روغن زیتون دارای اهمیت ویژه ای در روش های کنترل کیفیت مدرن است یکی از مهم ترین مشکلات در هنگام پیش بینی کیفیت روغن در طی نگهداری، پیچیدگی ویژگی های فیزیکو شیمیایی ماده اولیه و اختلاف داده ها به علل مختلف است. مدل سازی پایداری اکسایشی روغن زیتون با استفاده از سامانه استنتاج فازی– عصبی تطبیقی می تواند به بهبود فرآیند کنترل کیفیت این محصول کمک کند. ثبات اکسایشی یکی از پارامتر...

full text

پیش بینی بلند مدت رواناب با استفاده از شبکه های عصبی مصنوعی و سیستم استنتاج فازی

مدل‏های مفهومی بر مبنای هوش مصنوعی، اغلب برای پیش بینی‏های کوتاه مدت و میان مدت هیدورلوژیکی به کار رفته اند. در این مقاله با استفاده از مفهوم تولید مجموعه ای از پیش بینی ها1 (esp) و تفکیک مدل‏سازی برای متغیرهای اقلیمی و هیدرولوژیکی، از مدل‏های مفهومی برای پیش بینی بلندمدت حجم جریان رودخانه زاینده رود در محل ورودی به سد زاینده رود استفاده می شود. سیستم استنتاج فازی برای پیش بینی بارش فصلی به صور...

full text

پیش‌بینی خواص مکانیکی نانوکامپوزیت‌های پلی‌اتیلن سبک - نشاسته گرمانرم با استفاده از سامانه استنتاج فازی- عصبی تطبیقی

رفتار مکانیکی نانوکامپوزیت های پلی اتیلن سبک  نشاسته گرمانرم با استفاده از سامانه استنتاج فازی  عصبی تطبیقی بررسی شده است. بدین منظور، کامپوزیت های پلی اتیلن سبک  نشاسته گرمانرم حاوی مقادیر مختلف )صفر تا 3 درصد وزنی( نانوخاک رس ) Cloisite 15A ( با استفاده از فرایند اکستروژن تهیه شد. در عمل، انجام آزمون های مختلف برای تشخیص ارتباط میان پارامترهای فرایندی اکستروژن و خواص مکانیکی نانوکامپوزیت ها ب...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 47  issue 1

pages  175- 183

publication date 2016-04-20

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023